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TECHNICAL PAPER

HYDROBURST TEST OF A CARBON-CARBON INVOLUTE EXIT CONE
I. INTRODUCTION

A. Purpose

On December 20, 1984, a sea-level test firing of the PAM-D motor (CCT-1) was conducted at
Elkton Thiokol, Flkton, Maryland. During the firing, the PAM-D exit cone failed catastrophically. After-
wards, it was concluded that a net external pressure, due to the sea-level air pressure, buckled the aft
portion of the carbon-carbon exit cone. As a result, a buckling analysis of the PAM-D exit cone using
the SPAR finite element code was performed by the Stress Analysis Branch, EP46, at MSFC.

The theoretical analysis is not complete without a material correlation or knockdown factor.
The correlation factor accounts for material imperfections and variations in the carbon-carbon material
properties. This correlation factor was achieved with the aid of a hydrostatic buckling test of the aft end
of the PAM-D exit cone. A SPAR buckling analysis that simulates the hydrostatic test conditions pro-
duced a theoretical critical pressure, and then a comparison between the measured and predicted values
resulted in a material knockdown factor. The knockdown factor will adjust the SPAR buckling analysis
of the next sea-level firing of the PAM-D motor (CCT-2).

The immediate objective of this test was to obtain the critical pressure to induce buckling of the
aft end of the PAM-D exit cone. However, since the second sea-level firing of the PAM-D motor (CCT-2)
was postponed, additional time was available for strain gage instrumentation of the test specimen. The
addition of strain data allowed a check on the modulus of elasticity chosen for the finite element model
as well as determined if the cone failure was due to buckling or stress failure.

This report describes the hydrostatic buckling test and presents the recorded data. The analytical
model is then explained and the model results are presented. Subsequently, in order to determine the
material correlation factor, the results are evaluated and comparisons are made between the measured
and predicted values.

B. Summary

A hydrostatic buckling test was conducted by the Test Laboratory at MSFC on March 18, 1985.
Strains at various locations were recorded for each applied pressure. The applied pressure required for
elastic cone buckling was 9.75 psi.

A SPAR finite element model was constructed which simulated the test conditions. A buckling
pressure was computed by an eigenvalue solution and then stresses induced by the buckling pressure
were computed by a SPAR stress solution. The SPAR model calculated an applied buckling pressure of
8.76 psi.

A material correlation factor for the carbon-carbon exit cone was determined by comparing
measured and predicted values of the critical pressures. The correlation factor based on the critical
pressures was 1.1, This provides confidence in the SPAR model accuracy, since the correlation factor is
near unity. Consequently, this provides confidence in a SPAR buckling analysis of the CCT-2 where a
similar modeling scheme is used.
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It. BUCKLING TEST OF POOR QUALITY

The test fixture was fabricated and the testing was conducted at the MSFC Test Laboratory under
the supervision of Mr. David Snoddy, ET52.

A. Test Specimen

The test specimen was a 14.875-in. segment of the aft end of the PAM-D exit cone. Its diameter
ranged from 20.6875 in. to 29.5 in. A stiffening ring at approximately mid-height of the cone increased
the cone stiffness.

B. Test Fixture

The test fixture (Fig. 1) was a cylindrical steel pressure vessel with a 33.0-in. diameter and a
25.0-in. depth. Pressure was applied to the vessel with a Pacco hand-loader, serial number 30087-1. A
mechanical pressure gage allowed visual inspection of the applied pressure, and an electronic pressure
gage recorded the applied pressure along with the strain data.

Figure 1. Test fixture.

It was essential that the geometry, boundary conditions, and loading of the SPAR model simu-
lated that of the test configuration, so that the difference between the measured and predicted buckling
pressure could be attributed solely to the material property variations. The pressure loading and cone
geometry are easily modeled with the SPAR program. However, the SPAR code allows only “fixed”
and/or “free” boundary conditions. As a result, a fixed-fixed boundary condition was chosen for the test
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configuration, since it was the easiest to fabricate and correlate with a SPAR model. The base of the cone

was fixed to the vessel base by epoxy and the top of the cone was fixed by epoxy to a metal bridge
(Fig. 2). This ensured a fixed-fixed boundary condition as well as prevented water flow into the cone.

Figure 2. Fixed-fixed test specimen.

Since the carbon-carbon material properties are affected by moisture, a plastic sheathing with no
load carrying capability encompassed the entire external cone area and prevented the carbon-carbon
material from becoming saturated (Fig. 3).

Figure 3. Plastic sheathing encompassing entire cone exterior.



The metal bridge carried the axial load resulting from pressurization. This is significant since
cone buckling is affected by an axial loading.

Three openings in the vessel base provided an exit for the strain gage lead wires as well as pro-
vided a means for water discharge at the completion of the test. These openings also allowed the cone
interior to remain at ambient air pressure, so that the net external pressure loading was the water head
plus any applied pressure from the hand-loader.

C. Instrumentation

The exit cone was instrumented by the Materials Laboratory at MSFC with uniaxial, biaxial, and
triaxial strain gages. Four uniaxial gages measured circumferential strains on the inside surface at a height
of 7 in. below the top of the cone.

Biaxial gages measured circumferential and axial strains on the inside and outside surfaces (back-
to-back) at four cone heights and at various circumferential locations. A strain variation around the cir-
cumferential would detect plastic buckling, if it were to occur. Triaxial gages measured strains at two
cone heights and at five circumferential locations. A pretest ultrasound inspection located the areas where
material properties were critical and triaxial gages were placed at these critical locations.

Mr. Ben Goldberg, EH34, installed the strain gages and conducted the material testing.

An Acurex System (Autodata 1050, Acurex Corp., Mt. View, California) recorded the strain data
along with the applied pressure.

Table 1 identifies and Figure 4 illustrates the strain gage locations for the uniaxial and biaxial
locations.

D. Test Procedure

The pressure vessel was filled with water at room temperature, so that initially a linearly varying
pressure profile, due to the water head, was applied to the cone exterior. Air pressure was then applied
to the water filled vessel with the hand-loader. The resultant pressure loading could then be adjusted by
the hand-loader setting.

Starting at zero applied air pressure and continuing until cone failure, strain data were recorded
for each 0.5 psi increment of applied air pressure. A loading rate of 0.5 psi approximately every 20 sec
ensured a static loading condition as well as permitted a complete scan of the strain data for each load
step.

The cone failure occurred at an applied air pressure of 9.75 psi. This corresponds to a resultant
pressure profile which varies linearly and ranges from 10.10 psi (0.35 + 9,75) at the top of the cone to
10.65 psi (0.9 + 9.75) at the base of the cone, due to the applied pressure plus head pressure.

At failure, the pressure profile was lost due to a complete collapse of one section of the cone
(Fig. 5).



TABLE 1. DESCRIPTION OF STRAIN GAGE LOCATIONS

Uniaxial — all gages at 7 in. from top of cone circumferential location.

Ul 0°
u2 90°
u3 180°
U4 270°

Biaxial — inside and outside gages are back-to-back.

Outside:
Height 0 60° 120° 180° 240° 300°
2-1/4 in. 01 05 09
5-3/8 in. 03 07 011
9-7/8 in. 02 06 013 010
13-1/8 in. 04 08 012
Inside:
Height 0 _60° 120° 180° 240° 300°
2-1/4 in, 11 15 19
5-3/8 in. 13 17 111
9-7/8 in. 12 16 110
13-1/8 in. 14 I8 112
00
300°
\ 9-\7/8 13-1/8
240° J— \

180°

120°

Figure 4. Illustration of strain gage locations.

STIFFENING RING
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Figure 5. Failed cone,

E. Test Results

Figure 6 plots circumferential strain recorded by the uniaxial gages against applied air pressure.
All strains increased with increased applied pressure. This response was expected.

Since the axial load due to water pressure above the cone was carried by the metal bridge, the
axial strains should be small. Figures 7 to 12 plot axial strain recorded by the inside and outside biaxial
gages against applied pressure. The inside strains were low and were as expected at all applied pressures.
The resulting axial strains were due to the meridional component of the water pressure and to meridional
cone bending. The outside gages, however, measured high strains at low applied pressures. This may be
due to an increase in the resistance at the outside gage locations. A silicon water proofer applied to all
outside gages, the plastic sheathing encompassing the cone exterior, and/or moisture are three possible
causes of the increased resistance. The affects of these three possible causes as well as other test parame-
ters on the resistance will be studied by the Materials Laboratory at MSFC by subsequent strain gage

testing.

Figures 13 to 21 plot circumferential strain recorded by the inside and outside biaxial gages
against applied pressure. The inside gages measured increasing strain with increasing applied pressure.
This, again, is the expected response due to the applied loading. The outside gages measured high strains
at low applied pressures and, again, this is probably due to an increased resistance.

ORIGINAL PAGE IS
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Iti. SPAR FINITE ELEMENT MODEL

A bifurcation buckling solution was performed using the SPAR finite element code. The SPAR
model of the test specimen was constructed with rectangular shell elements, E43. These elements have
bending and membrane stiffness capabilities. Figure 22 shows one view of the constructed model.
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Figure 22. Constructed SPAR model.

The carbon-carbon cone is a fiber-reinforced composite with anisotropic material properties.
However, inputting anisotropic material properties for rectangular shell elements is difficult with the
current version of SPAR, so an isotropic solution was performed as an approximation. The model
material properties were approximated by an ‘equivalent” isotropic modulus of elasticity. The
“equivalent” modulus was calculated by scaling the modulus of elasticity in the axial and hoop direc-
tions according to the equation for the buckling pressure of an orthotropic cone [equation (1)]

5/2
P~ 0.86 v E,0-75 E,0-25 <f_) (t_> (1)
C

a- ”9“2)3/4 L P

so that

=1.075 g 0.25
Eequ‘EG E,

Material properties for the aft end of the cone were not available. However, material properties for the
forward end of the cone in the axial and hoop directions at room temperature were provided by Proto-
type Development Associates (PDA). The ‘“‘equivalent” isotropic modulus was calculated to be 1.48 x

106 psi using the properties available at the forward end.
Nodal rows that correspond to the top and base of the cone (first and last nodal rows) were

constrained by the SPAR code, so that all six degrees of freedom at these nodes are zero. This simu-
lated the fixed-fixed boundary condition of the test configuration.
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The added stiffness due to the stiffening ring was approximated in the model by increasing the
thickness of one row of elements at a location which corresponds to the stiffening ring location. This
resulted in equivalent moments of inertia at the stiffening ring location for both the cone and the cone
model.

Model pressure loading was separated into two load components. The first component simulated
the head pressure by a linear pressure profile that varied from 0.35 psi at the top to 0.9 psi at the base.
The second load component simulated the applied air pressure by a constant unit pressure profile of
1.0 psi. Since the head pressure was constant for the duration of the test, the first load component was
applied to the model as a preload. Then a bifurcation buckling solution of the form Ay = ABv was per-
formed with the second load component. This loading scheme simulated the actual loading of the test
specimen in the test fixture. Figure 23 illustrates the model pressure profiles.

SPAR predicted a critical applied pressure of 8,76 psi. Therefore, the critical total pressure is a
linear pressure profile varying from 9.11 psi (0.35 + 8.76) at the top to 9.66 psi (0.9 + 8.76) at the base,
due to head plus applied pressure. Figure 24 illustrates the critical pressure loading. Figures 25 and 26
show two views of the buckling mode predicted by SPAR.

Stresses induced by the total critical pressure were calculated by a SPAR stress run. Calculated
element stresses, which correspond to strain gage locations, are listed in Table 2.

0.35 psi

0.9 psi 1.0 psi

Head Pressure Applied Pressure

Figure 23. SPAR model applied loading.

0.35 psi
+ lh
0.9 psi 8.76 psi
Head Pressure Applied Pressure

Figure 24. Analytical buckling load.
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Figure 25. Predicted buckling mode (axial view).
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Figure 26. Predicted buckling mode (side view).
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TABLE 2. CIRCUMFERENTIAL AND AXIAL ELEMENT STRESSES DUE TO
THE CRITICAL APPLIED PRESSURE (8.76 psi)

Cone Height (in.) Stress (psi)
Circumferential:
5-3/8 -1307.75
9-7/8 -1466.2
13-1/8 -1821.03
Axial:
5-3/8 213.9
9-7/8 -141.18
13-1/8 -55.6

IV. DISCUSSION

This section compares the measured and predicted buckling pressures and calculates the material
correlation factor. Also, comparisons are made between the measured and predicted circumferential
strains at various cone locations.

The material correlation factor is (9.75/8.76) = 1.1. This shows a good correlation between the
model and the test specimen, since the correlation factor is near unity. However, material defects weaken
the structure, so, theoretically, the correlation factor should be less than unity.

The correlation factor exceeds unity because the model stiffness, which was approximated using
equation (1), was underpredicted. Also, equation (1) neglects the radial stiffness contribution, E,. An

anisotropic solution, which is easily performed with other finite elements codes, would be a more
accurate solution and would result in a stiffer model.

An underpredicted model stiffness may also be attributed to the available global material proper-
ties (Egp, EZ, E). Material properties for only the forward portion of the exit cone were available;

however, the hydroburst test was conducted on the aft portion of the cone. This discrepancy may con-
tribute to the low model stiffness.

Measured and predicted circumferential strains at various inside locations are compared in Table 3
to further evaluate model accuracy. Inside gages were used for the comparison, since outside gages were
affected by a resistance increase. Measured circumferential strains at a specific height and pressure loading
varied with circumferential location. For example, in Table 3, the circumferential strain at 12-7/8 in. for

a 9.5 psi applied pressure varied from 650 x. 1076 in./in. at 300 deg to 920 x 100 in./in. at 60 deg. For
elastic buckling, all strains at a specific cone height should be identical since the hydrostatic pressure is
symmetrical about the cone centerline. Since there is no evidence that the cone buckled plastically, the
strain variation is unwarranted and undesirable. This strain variation may be a characteristic of carbon-
carbon involutes subjected to hoop stress and is presently being examined by the Materials and Processes
Laboratory at MSFC.
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TABLE 3. MEASURED AND PREDICTED CIRCUMFERENTIAL STRAIN COMPARISON
AT VARIOUS CONE LOCATIONS

Measured Circumferential Strain due to 9.5 psi (10'6 in./in.)

Cone Height 0° 60°  120°  180°  240°  300°
5-3/8 ~670 ~680 ~720
9-7/8 600 ~800 ~720

13-1/8 ~920 -880 650

Measured Circumferential Strain Averaged and Compared to the
Corresponding Predicted Strain (x 1076 in./in.)

Cone Height Measured Predicted Correlation Factor
5-3/8 -690 -883.6 0.78
9-7/8 -707 -990.6 0.71
13-1/8 ~817 -12304 0.66

In order to account for the strain variation, so that the measured and predicted stresses can be
compared, the measured circumferential strains at each cone height were averaged. The average strains
are then compared to the corresponding predicted strains in Table 3 and a correlation factor based on
strain was calculated. Predicted strains are considerably higher than the measured strains at all three cone
heights. Again, this is due to an underpredicted material modulus.

V. CONCLUSIONS

The SPAR model proved to be an accurate test for predicting the buckling pressure of the test
cone. The correlation factor was calculated to be 1.1. This provides confidence in the SPAR modeling
technique which will be used to evaluate CCT-2.

The modulus of elasticity, which was approximated for an isotropic solution, was underpredicted
in the model. This resulted in predicted strains which were higher than the measured and a predicted buckl-
ing pressure which was lower than the measured. Adjusting the isotropic modulus or performing a more
exact anisotropic solution would produce a more accurate model.

Finally, it should be noted that this is only one test. Subsequent tests should be performed to
account for drift.
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